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Abstract 

Coordinated checkpointing is a well-known method to 
achieve fault tolerance in distributed systems. Long running 
parallel applications and high-availability applications are 
two potential users of checkpointing, although with different 
requirements. Parallel applications need low failure-free 
overheads, and high-availability applications require fast 
and bounded recoveries. In this paper, we describe a new 
coordinated checkpoint protocol capable of satisfying both 
types of applications. The protocol uses time to avoid all 
types of direct coordination (e.g., message exchanges and 
message tagging), reducing the overheads to almost a min- 
imum. To ensure that rapid recoveries can be attained, the 
protocol guarantees small checkpoint latencies. The pro- 
tocol was implemented and tested on a cluster of worksta- 
tions connected by a 155 Mbit/sec ATM. Experimental re- 
sults show that the protocol overheads are very small. 

I. Introduction 

Coordinated checkpointing and rollback recovery is a 
technique for fault-tolerance in distributed systems [25,10, 
II, 4, 12]. During the failure-free periods, a coordinated 
checkpoint protocol stores periodically in stable storage the 
state of the application and the messages that are in-transit 
in the network. When a failure occurs, recovery involves 
rolling back the application to the last available state, and 
then restarting its execution. One of the main advantages 
of coordinated checkpointing, when compared with other 
checkpointing methods, is its simplicity. For instance, log- 
based checkpoint protocols have to save the reception order 
and the contents of all messages, and then must garbage 
collect this information [23, 28, 8, 21, 1, 20]. Other pos- 
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itive aspects of coordinated checkpointing are that concur- 
rent failures can be tolerated, and applications do not have 
to execute in a piece-wise deterministic manner [22]. 

Arguments commonly used against coordinated check- 
pointing have been the overhead and lack of independence 
of checkpoint creation. Traditionally, two types of coordi- 
nation have been employed: extra message exchanges and 
message tagging. A coordinated protocol sends extra mes- 
sages, for example, to guarantee that all processes begin to 
save their states [2, 24]. One reason for using message tag- 
ging is to minimize the number of processes that have to 
roll back after a failure [19]. The main concern of high- 
availability applications is to minimize down time [7]. With 
coordinated checkpointing, larger checkpoint periods result 
on average in larger rollbacks, and consequently in longer 
recovery times. Typically, a coordinated protocol only be- 
gins to create a new application checkpoint when the previ- 
ous one has been completely stored. Therefore, the check- 
point period is lower bounded by the checkpoint latency, 
which is the time a protocol takes to save a new applica- 
tion checkpoint [27]. Any protocol that has a checkpoint 
latency dependent on the message delivery times (e.g., uses 
message coordination) should not use small checkpoint pe- 
riods. When there is network congestion, message delivery 
times become much larger than the average values, resulting 
in checkpoint latencies also larger than the average. 

In this paper, we describe a new coordinated protocol 
that uses time to avoid all types of direct coordination. Al- 
though processes save their states independently, the proto- 
col is able to store application checkpoints that are consis- 
tent and recoverable. The protocol is specified using two 
procedures, one that saves the process state whenever a lo- 
cal timer expires, and another that keeps timers approxi- 
mately synchronized (with reasonably good clocks, timers 
only need to be resynchronized approximately once a day). 
The second procedure is also used to detect failures in the 
processor clocks that might lead to incorrect behavior of the 
protocol. The protocol also has a checkpoint latency com- 
pletely independent of message delivery times, enabling it 
to function correctly even with small checkpoint periods. 
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The main contributions of this paper are: first, it de- 
scribes a new protocol with weaker requirements on the 
support system, when compared with previously proposed 
time-based protocols [26,4,12]. By removing the assump- 
tion of small bounded message delivery times, the protocol 
can be used in systems connected by most types of networks 
(including ethernet and ATM). Second, the paper presents 
an improved timer resynchronization procedure that is able 
to detect clock failures. Third, experimental results are 
shown for a cluster of workstations connected by a 155 
Mbit/sec ATM. The results indicate that the protocol intro- 
duces very small overheads. 

2. Related Work 

Several authors have proposed coordinated checkpoint 
protocols in the past. Most of these protocols exchange 
extra messages to coordinate the creation of new check- 
points [25, 10, 11, 18, 9, 2, 5]. More recently, time- 
based protocols were introduced that rely on approximately 
synchronized clocks or timers to avoid message coordina- 
tion [26,4, 12]. Time-based protocols save checkpoints pe- 
riodically, whenever local timers expire. 

Tong et al. [26] proposed the first time-based proto- 
col. This protocol assumes loosely synchronized proces- 
sor clocks and relatively small message delivery times. 
Processes use a positive acknowledgment retransmission 
scheme to be able to communicate reliably. A process starts 
to save its state whenever the local clock reaches a mul- 
tiple of the checkpoint period. The checkpoint of a pro- 
cess includes all messages that have been sent and have not 
been acknowledged. The protocol adds to each application 
message and acknowledgment a checkpoint number to de- 
tect in-transit messages. In-transit messages are stored in 
stable storage as they are received.' Processor clocks are 
«synchronized periodically. Cristian and Jahanian [4] also 
proposed a protocol that uses time to initiate the creation 
of the checkpoints. This protocol requires stricter assump- 
tions about the synchronization of the clocks and assumes 
that message delivery times are small with high probabil- 
ity. Like the previous protocol, it tags the application's 
messages, and saves the in-transit messages at the receiver. 
Neves and Fuchs [12] proposed a protocol that used syn- 
chronized timers instead of synchronized clocks. The pro- 
tocol assumes small and bounded message delivery times. 
Processes save their states whenever the local checkpoint 
timer expires. Contrary to the previous time-based proto- 
cols, the protocol prevents the existence of in-transit mes- 
sages. This is accomplished by disallowing message sends 
during a certain interval before the checkpoint creation. The 
size of this interval is proportional to the maximum message 
delivery time. 

The protocol proposed in this paper also uses synchro- 

nized timers instead of synchronized clocks. This charac- 
teristic is important in systems where, for security reasons, 
the applications are not allowed to change the value of the 
processor clocks. The new protocol, however, does not have 
to prevent the processes from sending messages during an 
interval of time. Instead of avoiding the existence of in- 
transit messages, the protocol includes them in the sender's 
checkpoints. The protocol also does not need the assump- 
tion that message delivery times are small. This assumption 
is common to all previous time-based protocols and is the 
most important limitation to the applicability of the proto- 
cols. The protocol does not tag the application's messages 
with any information, and it does not make extra accesses to 
stable storage to store the in-transit messages. Our new ap- 
proach also guarantees small and bounded checkpoint laten- 
cies, completely independent of the message delivery times. 

3. System Description 

An application is executed by a set of processes running 
on several nodes. A node contains a processing unit, local 
memory and a local hardware clock. Clocks do not have to 
be synchronized, however, they drift from real time with a 
maximum drift rate, p. Therefore, during a real-time inter- 
val [s,e], a clock accumulates at most an error of p(e — s) 
time units ((l-p)(e-s) < C(e)-C{s) < (l + p)(e-s), 
where C(t) is the value of the clock at the real time t). Pro- 
cesses can set timers to schedule future executions of oper- 
ations. A timer started at real time t with an initial value T 
expires at time C(v) > C{u) = C(t)+T. It is assumed that 
a process does not execute the program during the interval 
[«, u], which is called the scheduling delay. This interval 
is limited by a constant S, and it accounts for the situations 
when the operating system suspends a process until it fin- 
ishes another task. If two timers are started in two nodes 
exactly at the same time with the same initial value T, then 
they will expire at most (2pT + S — Sp2)/(1 — p2) time 
units from each other. This value will be approximated by 
IpT + S because drift rates are very small. For most quartz 
clocks available in commodity workstations, the drift rates 
are in the order of 10~5 or 10-6, and for high precision 
clocks p is in the order of 10-7 or 10-8 [3]. The value 
of the scheduling delay is normally in order of tens of mil- 
liseconds, however, we will only require that S is smaller 
than the checkpoint period. 

Processes communicate by exchanging messages. Mes- 
sages may be lost while in transit, arrive out of order, be du- 
plicated, or may be discarded because of insufficient buffer- 
ing space. To guarantee in-order reliable message delivery, 
the application utilizes a communication protocol. Typi- 
cally, the communication protocol keeps a copy of each sent 
message until an acknowledgment arrives. If the acknowl- 
edgment is lost or delayed, it retransmits the messages after 



a timeout interval. After retransmitting the message a num- 
ber of times, if no acknowledgment is received, the protocol 
assumes that the remote process has failed and returns an er- 
ror that can be used to initiate recovery [13]. The commu- 
nication protocol associates with each message a sequence 
number. When a message is received, it compares the asso- 
ciated sequence number with the expected sequence number 
to identify communication problems (e.g., duplicates). 

It is assumed that it is possible to save, at checkpoint 
time, a copy of the messages that have not yet been ac- 
knowledged and the current values of the send and receive 
sequence number counters. This information can be eas- 
ily obtained if the application is built on top of unreliable 
communication channels (e.g., sockets over UDP). In this 
case, the reliable communication protocol is implemented 
as part of the application, which means that the unacknowl- 
edged messages and sequence counters are automatically 
stored when processes create their checkpoints. On the 
other hand, if the application uses reliable communication 
channels (e.g., sockets over TCP), the checkpoint protocol 
has to be able to extract the necessary information. In this 
case, the checkpoint protocol might have to be implemented 
together with the communication protocol (normally in the 
operating system), or it will have to replicate some of the 
functionality of the communication protocol. 

4. Consistent and Recoverable Checkpoints 

A coordinated checkpoint protocol periodically saves 
global states of an application. A global state includes the 
state of each process that is executing the application, and 
possibly, some messages. To recover the application from 
failures, the protocol rolls back all processes to the last 
global state that is available, and then it lets processes re- 
execute their programs. Recovery is only correct if the ex- 
ternal results of the application reexecution are equivalent 
to one of the possible results of a failure-free execution [2]. 
To guarantee that correct recovery is always possible, the 
protocol should save global states that verify the following 
two properties: 

Consistency: If rcv(mi) is reflected in the global state, then 
send(mi) must also be reflected in the global state. 

Recoverability: If send(mi) is reflected in the global state, 
then rcv(mi) must also be reflected in the global state 
or the checkpoint protocol must be able to restore 
message mi. 

Global states are only acceptable for recovery if they cor- 
respond to an application state that might have occurred in 
a failure-free execution. The consistency property avoids 
rollbacks to global states where a process state reflects the 
reception of a message that was not sent by another process. 

This type of global state can appear if a process receives a 
message before creating its checkpoint, but the message was 
sent after the sender process stored its state. The recover- 
ability property ensures that all messages that are in-transit 
in the network at checkpoint time are logged by the proto- 
col. Otherwise, in case of a failure, these messages become 
lost. The protocol must explicitly store the in-transit mes- 
sages so that processes can reread them during recovery. 

5. Time-Based Checkpointing 

The time-based protocol is implemented using two pro- 
cedures, one that saves the processes' states, and another 
that keeps the checkpoint timers approximately synchro- 
nized. The create checkpoint procedure is kept as simple 
and efficient as possible since it is executed much more fre- 
quently than the resynchronization procedure. Its respon- 
sibilities consist mainly in storing a new checkpoint of the 
process, and in checking the timers to see if they need to 
be resynchronized. The other procedure is executed infre- 
quently, and serves two purposes: it sets the timers with a 
deviation smaller than D time units, and it detects failures 
in the processor clocks that might lead to incorrect behavior 
of the protocol. 

5.1. Checkpoint Creation Procedure 

The protocol uses time to indirectly coordinate the cre- 
ation of new global states. Processes determine the instants 
when they should save their states using a local timer with- 
out needing to exchange messages. By keeping the timers 
approximately synchronized, the protocol ensures that the 
independently created checkpoints form a consistent and re- 
coverable global state. In this section, we will assume that 
timers are initially synchronized in such a way that they ex- 
pire at most D time units apart. 

The protocol has to guarantee that processes create their 
checkpoints in such a way that the consistency property 
is verified. This property is satisfied if no process, after 
storing its checkpoint, sends a message that is read before 
the receiver saves its state. If timers were exactly synchro- 
nized, all processes would initiate their checkpoints at ex- 
actly the same time, and no consistency problems could 
occur. In a distributed system, however, timers are never 
perfectly synchronized, and they expire within an interval 
DEV. Therefore, one way to avoid consistency violations 
consists in guaranteeing that no messages are sent during 
DEV. If the checkpoint period is T, and n checkpoints 
have been created since the last timer re-synchronization, 
then the interval DEV is bounded by a maximum deviation 
MD = D + 2pnT + S > DEV. The value of MD is 
composed of three factors: the initial deviation among the 
timers D; the drift of the clocks 2pnT; and the scheduling 
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procedure createCkp() 

1 saveProcessStateO; 
2 N = N + l; 
3 ckpTime = ckpTime + T\ 
4 setTimer(createCfcp, ckpTime); 
5 if ((D + 2p(N - l)r - tdmi„) > 

(getTime() - (ckpTime - T))) 
6 requestResyncTimersO", 

Figure 1. Consistency condition. Figure 2. Checkpoint creation procedure. 

delay S. Processes, however, do not know if their timers 
expire at the beginning or at the end of the interval MD. 
One approach to address this problem consists of prevent- 
ing message sends during MD time units after the timers 
expire. 

In practice, the interval MD is too conservative for two 
reasons: first, since messages take a minimum time to be de- 
livered, tdmin, processes can start to send messages earlier 
without causing consistency violations. A message trans- 
mitted at the end of the interval MD - tdmin will ar- 
rive later than all timers expired, and consequently after 
the receiver process has initiated its checkpoint. Second, 
since it is assumed that processes do not execute during 
the scheduling delay, messages that arrive during this pe- 
riod will not be read. Therefore, it is possible to define 
a tighter interval where messages should not be transmit- 
ted. This interval is called effective deviation and is equal to 
ED = D + 2pnT-tdmin. 

Figure 1 shows the execution of two processes with 
checkpoint timers scheduled to stop at Tl and T2. The 
maximum interval that separates Tl from T2 is equal to 
D + 2pnT. Due to the scheduling delay, the timer of pro- 
cess PI expires later than T2. When process PI starts to 
execute, it creates a new checkpoint, and only after it reads 
message ml, avoiding the consistency problem. 

Typical communication protocols, either implemented 
as part of the application or in the operating system, en- 
sure reliable message deliveries by keeping a copy of each 
sent message until an acknowledgment arrives. Lost or 
corrupted messages are recovered by re-transmitting the 
messages if the acknowledgment is not received within a 
given interval, and duplicate messages are detected using 
sequence numbers. An in-transit message is a message that 
was sent before the sender process saved its state, and is 
received after the receiver process created its checkpoint. 
Therefore, unless acknowledgments violate the consistency 
property, a copy of each in-transit message exists in the 
sender machine at checkpoint time. 

A checkpoint protocol can ensure that all in-transit mes- 
sages are logged by including the unacknowledged mes- 

sages in the sender checkpoint. During recovery, the sender 
re-transmits the logged messages, avoiding message losses. 
Logging at the sender, however, might save a few other mes- 
sages besides the in-transit messages; a process can receive 
a message before its checkpoint, but the acknowledgment 
might only arrive after the sender has started to save its state 
(see example in Section 5.3). These extra messages have to 
be detected and discarded during recovery, otherwise they 
are read twice. This can be accomplished by saving, in 
the checkpoints, the value of the send and receive sequence 
number counters, which are used to detect duplicate mes- 
sages due to re-transmissions. By resetting these counters 
during recovery, the extra messages will be considered du- 
plicated messages and will be removed automatically. 

The code from Figure 2 can be used to imple- 
ment the checkpoint creation procedure. The procedure 
starts by saving the process state and by preparing the 
timer for the next checkpoint (Lines 1-4). The func- 
tion saveProcessStateO, stores the process state in sta- 
ble storage, including all unacknowledged messages and 
the send and receive sequence number counters. Next, 
createCkp tests if ED seconds have passed since the 
checkpoint time (Line 5). If the condition is not satisfied, 
this means that the term 2pnT has grown too large, and that 
timers need to be re-synchronized. The frequency of re- 
synchronization, however, is usually small. For reasonably 
good clocks (p = 10-6), checkpoint sizes of 1 MBytes, 
and stable storage with bandwidth of 5 MBytes/s, the re- 
synchronization procedure only needs to be run once a day. 

5.2. Resynchronization Procedure 

The time-based protocol utilizes the resynchronization 
procedure to keep the checkpoint timers approximately syn- 
chronized, and to detect failures in the clocks that might re- 
sult in incorrect behavior of the protocol. In this section, 
whenever we say that "a timer expires at a certain time", we 
will be referring to the instant that the timer is scheduled to 
stop. 

The resynchronization procedure selects one of the pro- 
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culation of DEV. From the three processes represented in 
the figure, PO is the coordinator. TO, Tl, andT2 were the 
times when the timers were scheduled to end during the last 
checkpoints. The coordinator estimates the value of DEVI 
while it resynchronizes the timer of process PI. Before 
sending the intervalc, the coordinator calculates the inter- 
val 101. After receiving intervalc, process PI computes 
the value of II and returns it to the coordinator in the ac- 
knowledgment. If the coordinator accepts the resynchro- 
nization, DEVI can be estimated in the following way: 

|Ai|-£><£>EVl<|A,| + £>, 

with Ai = (701 + tdmin) - II 

cesses to act as coordinator. The coordinator adjusts the 
other processes' timers in such a way that they expire at 
most D time units apart from its timer (if p and S are zero). 
Since clocks might not be synchronized, it can not ask an- 
other process to set the timer to a given absolute time. In- 
stead, it uses a simple iterative method; first, the coordinator 
sends to the other process the interval until the next check- 
point, intervals = ckpTimec — currentTimec. Sec- 
ond, the process saves the ijitervalc and the current time, 
currentTimep, and sends an acknowledgment back to the 
coordinator. Third, if the time that separates the trans- 
mission of intervalc and the reception of the acknowl- 
edgment is smaller than D + 2tdmi„ time units, the co- 
ordinator sends an END synchronization message. Oth- 
erwise, it returns to the first step and repeats the same 
operations. When the remote process receives the END 
message, it resets the timer with the new checkpoint time 
ckpTimep = currentTimep + intervalc — tdm{n. 

The resynchronization method has to be done in an it- 
erative way because delivery times are not constant. In 
some cases the first message of the coordinator can take 
more time to arrive than in others. Therefore, the coordi- 
nator can only guarantee a deviation smaller than D if it 
rejects all iterations where the round trip time is larger than 
D + 2tdmin. Nevertheless, messages usually have short de- 
livery times, which allows D to be kept small. The constant 
D should be made equal to a multiple of the round trip-time 
of a small message. As a rule of thumb, we normally set 
D to 10 ms, which works well for a 10/100 Mbit/s Ethernet 
and 155 Mbit/s ATM networks. 

The time-based protocol is only able to ensure that global 
states are consistent if timers expire within the expected de- 
viation, DEVeXpected — D + IpnT. For this reason, it is 
important to detect clock failures. While the coordinator 
adjusts the timers, it estimates the maximum deviation be- 
tween two timers during the last checkpoint creation, DEV. 
If DEV is larger than DEVexpected, then at least one of the 
clocks is not working correctly. 

The example from Figure 3 is used to illustrate the cal- 

Using an equivalent method, the coordinator obtains the 
estimate of DEVI. Next, it computes DEV using the es- 
timates DEVI and DEVI. Two cases have to be consid- 
ered: both timers expired before or after TO, or one of the 
timers, expired before and another after TO. The following 
bounds can be derived for DEV, 

maa;(|Ai|, |A2|) - D < DEV < ma:c(|Ai|, |A2|) + D 
if ((Ai < 0) and (A2 < 0)) 
or ((Ai > 0) and (A2 > 0)) 

|Ai| + |A2| - 2D < DEV < |Ai| + |A2| + 2D 
otherwise 

The coordinator can make the following conclusions by 
comparing the expected deviation with the estimated maxi- 
mum and minimum deviations: 

( DEVexpected > DEVmax OK 
<   DEVexpected < DEVmin Failure 
I,  DEVmin < DEVeXpected < DEVmax    No conclusion 

Since DEV is not exactly determined, there is a window 
of uncertainty of size AD time units where conclusions can 
not be made about the failure of the processor clocks. A 
pessimistic or optimistic approach can be used to address 
this problem; with the pessimistic approach, the protocol 
assumes that there was a failure if EDexpected < DEVmax. 
The optimistic approach uses the condition EDeXpected < 
DEVmin to detect clock failures. If a clock failure is found 
then a system warning can be issued and the protocol can 
increase the assumed value for the drift rate (e.g., pnew = 
Poid * 2). If, after a few resynchronizations, the value of p 
does not converge to the real drift rate, then another warning 
must be sent saying that the protocol is unable to recover 
from the clock failure. 

The resynchronization procedure is implemented using 
the code from Figure 4. The code adjusts the checkpoint 
timers and detects the clock failures. For this reason, it 
should only be utilized after processes have created at least 
one checkpoint. The first synchronization can be done us- 
ing an equivalent procedure with the lines corresponding 
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procedure ResynchronizeTimers() 
Coordinator: 

1 A„ = At = 0; 
2 for each(p € Processes) do 
3 while (TRUE) { 
4 currentTimec = getTimeO; 
5 send(p,ckpTime — currentTimec); 
6 receive(p,7); 
7 if ((getTime() - currentTimec) <(D + 2* tdmin)) 

8 { 
9 70 = (curren£Ttmec + tdmi„) - (ckpTime - T); 
10 ' if (/ > 10) A6 = max(A6, / - 10); 
11 else Aa = max(A0,/0 - I); 
12 break; 
13 } 
14 } 
15 broadcast^— 1); 
16 if ((A„ + A6 + 2D) >(D + 2p(N - 1)T)) Error(); 
17 JV= 1; 

Process p: 
18 receive(coord,ioop); 
19 do { 
20 currentTimep = getTimeO; 
21 intervale = loop • 
22 send(coord, currentTimep — (ckpTime — T)); 
23 receive(coor<i,Zoop); 
24 } while (loop>0); 
25 ckpTime = currentTimep + intervale — tdmin', '■ 
26 setTimer(create(7fcp,cA;pTime); 
27 N=l; 

Figure 4. Timer resynchronization procedure. 

to the fault detection removed. The coordinator executes 
the while loop to synchronize the remote timers (Lines 
2-3). It begins by sending the intervalc, next waits for 
the acknowledgment, and then sees if the round-trip time 
is smaller than D + 2tdmin (Lines 4-7). In the affirma- 
tive case, it breaks the loop and begins to set another timer 
(Line 12). The END message is sent when all timers have 
been adjusted (Line 15). The code extends the fault detec- 
tion method described previously to a number of processes 
larger than three. The coordinator estimates the two devia- 
tions by receiving the interval from the other process (Lines 
1, 6, and 9-11). The pessimistic approach is used to deter- 
mine if there was a clock failure (Line 16). The other pro- 
cesses receive intervalc (Lines 18-24), and then they reset 
the timers (Lines 25-26). 

5.3. Examples 

The example from Figure 5 shows the execution of the 
protocol during the creation of an application checkpoint. 

MD 

PI Tl 
ED 

P2 /ml\ m2 
m3 

■ - No mesg sends     m - Time to store the ckpt 

Figure 5. Creation of a checkpoint. 

The two processes begin to save their states at different in- 
stants because checkpoint timers are not exactly synchro- 
nized. However, since timers expire at most MD seconds 
apart, the two checkpoints are separated by a small interval. 
Message ml is not logged by the protocol since at 72 the ac- 
knowledgment has already arrived. Both messages m2 and 
m3 are logged by the protocol. Message ml is sent by pro- 
cess PI and is received by process P2 before the creation 
of the checkpoints meaning that m2 is not an in-transit mes- 
sage. However, the acknowledgment of nil only arrives to 
process PI after the timer expires. At Tl, process PI does 
not know if ml is an in-transit message or not, so it includes 
the message in the checkpoint. 

Later, if there is a failure, processes will have to roll 
back to the stored checkpoints, and process PI will resend 
m2. Process P2 will detect that m2 is a duplicate using the 
receive sequence number counter that was included in its 
checkpoint, and will remove the message. (Although the 
acknowledgment of m2 is an in-transit message, the proto- 
col does not need to log acknowledgments.) Message m3 is 
an in-transit message, and it is included in the checkpoint 
of process P2. Since process PI is storing its state when m3 
arrives, the acknowledgment is sent after the checkpoint is 
completed. 

reSynC-        JCN=N+1 
^.mers 

■ No mesg sends ■ Time to store ckpt 

Figure 6. Several checkpoints. 

The example from Figure 6 illustrates the behavior of the 
protocols throughout a long period of time. When the appli- 
cation starts, timers are well synchronized, and ED is much 
smaller than the time to save a checkpoint. As the applica- 
tion continues its execution, the value of ED increases be- 
cause of the clock drifts. On the N1 s checkpoint, the value of 



Table 1. Applications used in the experiments. 

Application Problem Description 

ga 1600 individuals, 10 million function evaluations 
ising 1500 iterations on a 2500x2500 particle surface 
povray 400x400 pixels, music.pov image 

ED becomes larger than the time to store the checkpoint of 
process P2. After saving its state, process P2 sends to pro- 
cess PI a request for timers' re-synchronization (in the ex- 
ample, PI is the coordinator). When processes create their 
next checkpoints, the value ED is again small. 

6. Experimental Results 

6.1. Application and Implementation 

Three compute-intensive parallel applications were used 
in the experiments. These applications are complete pro- 
grams, each with different -characteristics in terms of fre- 
quency of communication and amount of information ex- 
changed. Table 1 presents the inputs that were used for each 
application. 

• ga: is a parallel implementation of the genetic algo- 
rithm system GENESIS 5.0 [15]. In the experiments, 
ga was used to solve a non-linear optimization prob- 
lem. A node executes the genetic algorithm on its 
individuals and, after a few generations, sends a few 
individuals to one node and receives a number of in- 
dividuals from another node. 

parallel programming in clusters of workstations, and it of- 
fers the standard interface MPI - Message Passing Inter- 
face [6]. Processes in RENEW communicate by exchang- 
ing datagrams over the UDP transport protocol. To ensure 
ordered and reliable message deliveries, RENEW utilizes 
acknowledgments and sequence numbers (as explained in 
Section 3). The implementation of the protocol was based 
in the procedures presented in Figures 2 and 4. The val- 
ues of the maximum clock drift rate and minimum mes- 
sage delivery time were set to 10-5 and 0, respectively. 
The reader should notice that setting idmi„ equal to zero 
is a conservative assumption since it increases the size 
of critical interval. The value of D was set to 10 ms and the 
checkpoint period to 5 minutes. 

The experiments were performed on a cluster of four Sun 
UltraSparc workstations running the Solaris 2.5 operating 
system. Each machine had 512 MBytes of main memory 
and 4 GBytes of local disk. The interconnection network 
was an 155 Mbits/s ATM. The processes' checkpoints were 
either saved in the local disk or in a remote HP worksta- 
tion (also connected to the ATM network). All experiments 
were done during the night when the load in the network 
and machines was light. 

6.2. Performance Results 

• ising: is a parallel simulation model of physical sys- 
tems such as alloys and polymers [17]. ising sim- 
ulates, in two dimensions, the spin changes of Spin- 
glass particles at different temperatures. In each step, 
a node computes the spin values of a subregion of the 
total particle surface and then exchanges the bound- 
ary particles with two other nodes. 

• povray: is a parallel implementation of the raytracer 
POVRAY 2.2 [16]. This application uses a master- 
slave programming model. The main responsibility 
of the master is to distribute pixels of the image to the 
slaves. The slaves repeat the following steps: receive 
a number of pixels, calculate the color of the pixels, 
and return the results to the master. 

The checkpoint protocol was implemented on the RE- 
NEW run-time system [14]. This system was designed for 

Table 2 displays the experimental results obtained dur- 
ing the execution of the applications. The execution times 
without the checkpoint protocol are presented in the second 
column. In the column checkpoint is shown the number 
of checkpoints that were created, the size, and the average 
elapsed time to store a checkpoint in the local and remote 
disks. There are two checkpoint sizes for the ga and povray 
applications. The process that starts the ga application has 
a larger checkpoint size than the other processes because 
it allocates some extra data structures during initialization. 
The master of the povray application does not have to parse 
the image description file resulting in a smaller checkpoint 
size. The checkpoint storage time values correspond to exe- 
cution of the instruction saveProcessState. As expected, 
it takes more time to write the checkpoints in a remote disk 
than in a local disk. However, since the network is fast and 
only a small number of processes execute concurrently, the 
difference between the two write times is not too large (it 



Table 2. Performance Results on a Cluster of Workstations. 

NoCkp 

sec #. 

Checkpoint 
Local 

KBytes         sec 
Remote 

sec 

Time-Based 
Local          Remote 

sec      %      sec      % 

ga 2872 9 858/681 0.2/0.3 0.7/0.8 2972 3.5 2904 1.1 
ising 3198 10 6828 1.5 3.3 3224 0.8 3232 1.1 
povray 3091 10 683/22715 0.2/4.5 0.8/11.1 3120 0.9 3156 2.1 

doubles). It is possible to observe in all cases that the over- 
head introduced by the checkpoint protocol is small, less 
than 3.5%. During the failure-free operation, the protocol 
only needs to create process checkpoints periodically, and 
to adjust the timers. All the other overheads were removed 
from the protocol. 

The time-based protocol completes the creation of a new 
application checkpoint as soon as all processes save their 
states. The checkpoint latency is upper bounded by D + 
2pnT + S + tcmax, where tcmax is the maximum time to 
store a process state. Since the protocol re-synchronizes the 
timers whenever D+2pnT—tdmt„ becomes larger than the 
minimum time necessary to create a checkpoint, tcmj„, the 
checkpoint latency is in the order of *cmtn +tcmax +5. For 
example, for ising with checkpoints created in the local 
disk and S equal to one second, the latency is around four 
seconds. 

Typical protocols that use message coordination need 
at least to exchange one round of messages to initiate the 
checkpoints (usually there are more rounds). The check- 
point latency for these protocols is in the order of tdmax + 
tcmax, where tdmax is the maximum time to deliver a mes- 
sage. The value of tdmax varies depending on the system 
where the application is being run, but it can be seen as 
the maximum time the communication protocol is willing 
to wait to deliver a message, before it considers that there 
was a failure in the network or remote host. For example, 
in the implementation of TCP of Solaris 2.5 this value is 
more than 8 minutes. Therefore, in this environment, the 
checkpoint latency of this protocol is much larger than the 
time-based protocol. 

In another paper, we have studied the performance of a 
coordinated protocol under failure conditions [14]. It was 
observed that processes could be restarted in a few seconds, 
and then they would continue their execution. Since during 
recovery the protocol lets the application run without inter- 
ference, the time to restore the application to the prefailure 
state was approximately equal to the failure-free execution 
time. We expect to observe similar behavior for the protocol 
described in this paper. 

7. Conclusions 

In this paper we have described a new time-based check- 
point protocol that is able to save consistent and recoverable 
global states with small overheads. The protocol uses time 
to indirectly coordinate the checkpoint creation, avoiding 
extra message exchanges and message tagging. To guaran- 
tee that rapid recoveries can be accomplished, the protocol 
has checkpoint latencies independent of the message deliv- 
ery times. By removing the assumption of small bounded 
delivery times, the protocol can be used in most computer 
systems, including systems connected by ethernet or ATM. 
The checkpoint protocol was implemented and evaluated 
using three parallel applications. Our results show that the 
protocol introduces performance costs smaller than 3.5%, 
both when checkpoints are saved in the local or remote 
disks. 
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